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Abstract 

Atrial fibrillation (AF) patients have a fivefold increased risk of 

cerebrovascular events, accounting for 15-18% of all strokes. In 

stroke prevention, the CHA2DS2-VASc is an important score for 

distinguishing patients with a low-risk of stroke. However, there 

is currently no specific measure available to determine the level 

of stroke risk. In this study, we propose a digital twin (DT) 

model of the left atrium (LA) and the application of 

computational fluid dynamic simulations (CFD) to improve 

patient-specific stroke risk assessment. Simulations were run on 

patient-specific dynamic LA models in sinus rhythm (SR) on 

three groups of subjects: 10 controls, 10 paroxysmal AF (PAR) 

and 10 persistent AF (PER). Blood velocity and regions prone 

to thrombogenesis based on endothelial damage were all 

measured in both the LA chamber and the left atrial appendage 

(LAA). Following larger-scale testing and classification 

analysis, the proposed approach could be used to improve 

stroke risk assessment. 

 

1. Introduction 

The most common form of supraventricular arrhythmia 

worldwide is atrial fibrillation (AF). The population is getting 

older and more people are living with chronic illnesses, which 

supports recent estimates [1] of a significantly higher incidence 

and prevalence of AF and justifies the phrase "epidemic of our 

century." The risk of cerebrovascular events is five times higher 

in people with AF; in the medium term, this is due to structural 

remodelling of the left atrium (LA), which manifests as 

increasing dilatation of the LA [2] and extension of the left atrial 

appendage (LAA) [3]. Such structural remodelling results in a 

change in mechanical function, which causes a chaotic and 

drastically diminished contractile activity of the cardiac cells 

[4], compromising blood washout and encourages clot 

formation, particularly in the LAA. 

The CHA2DS2-VASc score is commonly employed in 

clinical settings to assess stroke risk. Although simple to 

comprehend, relies on a limited set of factors (e.g., age, sex, 

hypertension, diabetes, congestive heart failure, prior stroke, 

etc.) rather than the mechanisms underlying thrombus 

formation. It is advised for use in identifying low-risk patients 

[5]. 

Blood flow patterns within the LA and LAA derived using 

computational fluid dynamic (CFD) simulations can be used to 

study the mechanisms underlying thrombus development. 

Previous research demonstrated the ability to simulate realistic 

LA blood flow 3D patterns using patient-specific dynamic 

anatomical models, LA displacement derived from imaging data 

and boundary conditions derived from Doppler acquisition at 

the pulmonary veins (PVs) and the mitral valve (MV) [6-7]. 

In this study, we propose a digital twin (DT) model of the 

LA and the application of CFD simulations to enhance the 

ability to assess the risk of stroke for a given patient. After 

determining the blood velocity field, regions that are prone to 

thrombogenesis and blood stasis were evaluated among three 

groups of subjects under sinus rhythm (SR) conditions: 10 

controls, 10 paroxysmal AF (PAR) and 10 persistent AF (PER). 

The results were compared between the groups in order to 

highlight differences and enable a very early identification of 

potential parameters that could be used to create a new index for 

stroke risk stratification. 

 

2. Material and Methods 

2.1. Patients data 

Contrast Enhanced Computed Tomography (CECT) data 

from a Philips Brilliance 64 CT scanner were obtained in SR. 

Ten volumes (170 axial slices, 0.4 mm pixel size, 1 mm slice 

thickness) covering a cardiac cycle from the end of ventricular 

diastole were reconstructed and used for the following study 

using retrospective ECG gating. At the MV and PVs, Doppler 

measurements were also collected. 

 

2.2. Data analysis 

Figure 1 illustrates the data processing workflow that we 

developed. For each patient, the CECT data were handled as 

follows: ten volumes were reconstructed using retrospective 

ECG gating, and only the first volume was segmented to define 

the LA anatomical model. First of all, a volume of interest was 

established within the 3D acquisition. By detecting the LA 

contour in 2D space, LA segmentation was performed slice by 

slice. A rough segmentation was computed for each slice using 

intensity thresholding: the peak in the image histogram 

corresponding to the LA was detected to define two thresholds, 

which were then used to perform a hysteresis segmentation 

since it provides more flexibility than a  single threshold. 

Following this, the rough LA contour was adjusted by removing 

spurious regions using a set of morphological opening and 

closing operators. Finally, the contour was regularized using a 

curvature-based level set model. The 3D LA structure was then 

reconstructed using the data resolution and the 2D LA contours 

in each slice. 

Moreover, a few extra procedures were conducted to make 

the LA anatomical model suitable for CFD simulation; this  

Computing in Cardiology 2023; Vol 50 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2023.246



Figure 1: Workflow of the study: patient-specific CECT data (A1) are processed to derive the LA anatomical and displacement models (B1-2) from 

which a dynamic model (B3) is computed; the latter represents the computational domain for the personalized CFD model (C) using MV/PVs Doppler 

as boundary conditions (A2). 

 

 

 

 

included employing Laplacian smoothing technique to refine 

the model and manually adjusting both the inflow (i.e., the four 

PV's) and outflow (i.e., the MV) planes. After that, a volumetric 

tetrahedral mesh was created. 

To obtain the patient-specific displacement model, CT 

volume registration and initial mesh propagation were 

performed using Elastix [8]. Together with Transformix, this 

library allows you to evaluate and then apply the transformation 

matrix to register the reference volume. A B-spline model was 

utilized to execute a non-rigid registration and the mean squared 

difference was used to optimize registration performance. In 

accordance with the physiological periodicity of the heart 

motion, Fourier series interpolation was applied, which recovers 

a continuous and periodic function from the discrete data 

provided. 

Finally, to run fluid-dynamic simulations in SR conditions, 

the dynamic model was supplied as input to the customized 

CFD model [6].  

The use of the incompressible Navier-Stokes Equations in 

the Arbitrary Lagrangian Eulerian frame of reference allowed 

for the replication of blood flow as a fluid. Using realistic 

boundary conditions that took into account the MV flowrate and 

the size of each pulmonary vein, CFD simulations were carried 

out as previously mentioned. 

The dynamic viscosity was adjusted to 0.035 poise, the 

density to 1.06 g/cm3, and the time step to 0.001 seconds. The 

LifeX package was used to run the simulations [9]. 

In order to mitigate the impact of the initial fluid velocity 

conditions on the results, we conducted a simulation with three 

heartbeats and solely examined the final one. The blood velocity 

field for both LA and LAA was examined for each model. 

Additionally, time-average wall shear stress (TAWSS), 

oscillatory shear index (OSI), relative residence time (RRT) and 

endothelial cell activation potential (ECAP) indexes were 

measured.  

These variables can, in fact, be used to detect endothelial 

shear, the development of new tissues and plaques and the 

promotion of neointimal hyperplasia [10]. 

First of all, the viscous stress vector exerted by the wall on 

the fluid was defined: 

  𝜏 =  µ [𝛻�⃗⃗� +  (𝛻�⃗⃗�)𝑇] ∙  �⃗⃗� 

where µ is the blood viscosity and 𝛻�⃗⃗� the velocity gradient, 

while �⃗⃗� is the unit normal vector drawn from the fluid through 

the wall. 

In general, the normal component of the viscous stress vector 

can be subtracted from the total viscous stress vector to yield the 

wall shear stress (WSS) vector, including direction: 

𝑊𝑆𝑆⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝜏 − (𝜏 ∙  �⃗⃗�) �⃗⃗� 

The wall's force on the fluid per unit area is expressed by the 

WSS in a direction along the local tangent plane. The periodicity 

of the heartbeat allows to calculate an averaged indicator, the 

TAWSS, which is defined as: 

𝑇𝐴𝑊𝑆𝑆 =  
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where T is the total duration of the simulated cardiac cycles and 
‖∙‖2 is the Euclidean norm of a vector. 

Now let's consider the OSI, defined as follows: 
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This dimensionless indicator provides values in the range 
[0,0.5] and is higher in places where the WSS varies significantly 
over the cardiac cycle. The primary factor contributing to 
elevated OSI values are the shifts in the flow's direction. 

Another index is the RRT, defined as follows: 

𝑅𝑅𝑇 =  
1

(1 − 2𝑂𝑆𝐼) ∗ 𝑇𝐴𝑊𝑆𝑆
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This indicator locates areas of the wall where the shear stress 
is small and the flow is oscillatory. The blood residence period in 
close proximity to the wall lengthens due to this hemodynamic 
environment.  

In order to localize regions of the wall exposed to both high 
OSI and low TAWSS, a new index was proposed by Di Achille 
et al. [11] using the ratio of these two indices to characterize the 
degree of ‘thrombogenic susceptibility’ of the vessel wall. This 
metric is referred as ECAP: 

𝐸𝐶𝐴𝑃 =  
𝑂𝑆𝐼

𝑇𝐴𝑊𝑆𝑆
 

Higher ECAP index values will thus correspond to 

circumstances of high OSI and low TAWSS, indicating 

endothelial susceptibility. This measure is frequently utilized in 

the investigation of thrombogenic risk within LAA.  

 

3. Results 

In all study subjects, data processing and simulations were 

feasible. Generally, the control subjects had higher velocity 

values in both the LA and LAA than the AF subjects.  

Regarding blood velocity, the lowest mean velocity within 

the LAA was found in a PER subject (0,03 m/s), while the 

biggest mean velocity was found in a control subject (0,14 m/s). 

On average, the control group showed a higher velocity (0.11 ± 

0.03 m/s) as compared to PAR (0.05 ± 0.02 m/s) and PER (0.04 

± 0.02 m/s) groups (p<0.05). Additionally, the mean velocity at 

the LAA ostium was measured, showing a higher value in the 

control group (0.28 ± 0.05 m/s) as compared to PAR (0.14 ± 

0.03 m/s) and PER (0.11 ± 0.04 m/s) groups (p<0.05). Overall, 

the control subjects showed a better washout throughout the 

cardiac cycle. 

The CFD indexes are shown in Figure 2.  

The TAWSS map is shown in the 1st row of the figure. It 

displays an average value that depends on the velocity gradient 

since it is evaluated as the integral of the WSS across the full 

cardiac cycle. We found higher TAWSS values at the ostium of 

the LAA in the control subjects with respect to the AF subjects. 

In addition, the TAWSS over the entire LAA was also 

calculated: control subjects showed an average value of 0.78 ± 

0.35 Pa, while PAR and PER subjects showed values of 0.28 ± 

0.16 Pa and 0.18 ± 0.07 Pa respectively (p<0.05). This means 

that, overall, the velocity gradient was greater in control 

subjects. 

Following the OSI map, reported in the 2nd row of Figure 2. 

We found higher OSI values both at the ostium and over the 

entire LAA in the AF subjects (0.25 ± 0.06 and 0.22 ± 0.06, 

PAR and PER respectively)  with respect to the control subjects 

(0.20 ± 0.07). One probable explanation is the nature of its 

movement, which allows at first an emptying, and then a filling, 

reversing the blood direction, throughout one heartbeat. This 

changes in direction results in high OSI values, and the major 

changes are clearly visible in the AF subjects, especially at the 

tip. However, the parameter didn’t show significant differences 

among the groups (p = 0.2).  

The RRT map is reported in the 3rd row of Figure 2. Higher 

values were found in the PAR and PER subjects (123.83 ± 

143.68 Pa-1 and 112.79 ± 97.25 Pa-1, respectively) as compared 

to the control (9.09 ± 7.66 Pa-1) group (p<0.05). This mean that 

there is a combination of higher oscillations and lower wall 

shear stress in the AF subjects as compared to the control 

subjects that may increase the blood's time in close proximity to 

the wall,  allowing particles to deposit there and inducing an 

inflammatory response in the endothelial cells. 

Finally, the ECAP map is shown in the 4th row of Figure 2.  

 

 

 

 
 

 

 

 

 

 

Lower values were found in the control (0.93 ± 0.63 Pa-1) 

subjects as compared to PAR and PER (4.77 ± 2.08 Pa-1 and 

3.96 ± 3.28 Pa-1, respectively) subjects (p<0.5), suggesting the 

presence of thrombogenic areas. 

 

Figure 2: LAA analysis in one PER subject: Time-average wall shear 

stress (1st row), Oscillatory shear index (2nd row), Relative residence 

time (3rd row), Endothelial cell activation potential (4th row). 
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4. Discussion 

The new method allowed creating a model specifically for 

each patient using CECT data. Our process could be easily 

adapted to handle diverse types of data inputs. For example, it 

could be used with 3D data from other imaging systems such as 

MRI or real-time 3D echocardiography, as long as the 

segmentation step is optimized for that particular data.  

In recent years, several papers have measured ECAP with the 

main focus of understanding how specific heart rhythm 

problems or treatments affect the body and the potential benefits 

and dangers they may have. Although the studies used different 

CFD models and methods, the velocity values we found are 

similar. Unfortunately, comparing ECAP values is more 

challenging because we need to make the data comparable 

between different subjects. 

By implementing this approach, the CHA2DS2-VASc score 

can be enhanced, enabling personalized blood clot prevention 

treatment and facilitating doctors in scheduling examinations. 

To achieve this aim, we need to overcome various challenges in 

both imaging and modeling areas. Cardiac imaging is an 

important method for checking for blood clot risks in patients 

with atrial fibrillation. However, it cannot analyze the reasons 

why blood clots form, like what happens in the blood vessels 

and the blood clotting process. 

Some studies have found that it is possible to assess a 

hypercoagulability index of the blood by using a simplified 

system of reaction-diffusion-convection equations to describe 

the thrombus growth dynamics. This model is centered around 

the study of key proteins such as thrombin, fibrinogen, and 

fibrin [12], which are essential components involved in blood 

clotting. Our method would greatly benefit from including these 

extra indicators to get a better understanding of how each factor 

affects the risk of stroke.  

 

5. Conclusions 

In summary, these preliminary results suggest that there are 

evident disparities between patients diagnosed with AF and 

individuals who are considered healthy. This means that this 

method has the potential to assess the risk of stroke in AF 

patients. We are currently conducting further tests on a larger 

sample population. In addition, we are also assessing different 

measurements through our computations. It is crucial to follow 

these steps in order to validate the authenticity of the initial 

findings and ascertain the risk level associated with each patient. 
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